AMLG

 找回密码
 立即注册
查看: 621|回复: 0

[spss] spss logistic回归分析结果如何分析_spss中logistic回归

[复制链接]

1万

主题

1万

帖子

3万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
39054
发表于 2016-11-14 14:25:04 | 显示全部楼层 |阅读模式
如何用spss17.0进行二元和多元logistic回归分析,
一、二元logistic回归分析,
二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。,
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。,
(一)数据准备和SPSS选项设置,
第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 图 1-1,
第二步:打开“二值Logistic 回归分析”对话框:,
沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。,

,
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS显著相关的为性别、年龄、有无高血压,有无糖尿病等(P0.05为不显著(无效假说成立,不具有统计学意义)。 二、多项(多元、多分类、Multinomial)logistic回归分析,
前面讲的二元logistic回归分析仅适合因变量Y只有两种取值(二分类)的情况,当Y具有两种以上的取值时,就要用多项logistic回归(Mutinomial Logistic Regression)分析了。这种分析不仅可以用于医疗领域,也可以用于社会学、经济学、农业研究等多个领域。如不同阶段(初,
一、初二、初三)学生视力下降程度,不同龋齿情况(轻度、中度、重度)下与刷牙、饮食、年龄的关系等。,
下面我们以图1-2中,对apoba1(ApoB/AI)项中数值做四分位数后,将病人的ApoB/AI的比值划分为低、较低、中、高四个分位后利用多项logistic回归分析其与ICAS之间的相互关系。,
首先来做四分位数,很多人在做四分位数的时候都是自己算出来的,其实在SPSS里面给出了做四分位数的程度即分析(Aanlyze)→描述统计(Descriptive Statistics)→频率(Frequencies)。打如图2-1开频率对话框。将我们要分析的数值变量Apoba1选入到变量对话框中。 选择统计量,按照图2-2中勾选四分位数选项,其他选项按照自己需要勾选,然后点击图2-1中的确定按钮,开始运算。在图2-3中可以读取我们的四分位数,
值。图中百分数表示的是对该变量做的四分位数的百分比,25表示前25%的,50表示前50%的,75表示前75%的。每一项对应的后面数值即为相应的四分位数,如0.5904,即为前25%的个体与后75%个体的分位数。,
按照如上方法得出ApoB/AI的比率后我们可以把该比值划分为四个区间,即当ApoB/AI的比率1.0886时为高。然后将这一划分如图1-1中“四分位数”一项用分类数值表示即1代表低,2代表较低,3代表中,4代表高。这里还要强调的是我们要研究其与ICAS之间的相互关系,那么我们需要将其设为二分类变量,即是ICAS的情况为1,否则为0,但多项logistic回归分析也会将1,0置换,所以我们需要在这里将我们需要研究的情况置换为0,然后将其他置换为1。下面就可以进行多项logistic回归分析了。如图,
2-4打开多项logistic回归分析对话框(图2-5)。,
如图2-5所示,在”因变量”中选入刚才我们输入的四分位数分类变量,在因子中输入分类变量ICAS(这里一定是分类变量,可以是一个也可以是多个),在“协变量”中输入数值变量如年龄(这里一定是数值变量,,
可以是一个也可以是多个),但因本次没有对年龄进行分析,仅对ICAS进行了单因素分析,所以我们把年龄移出协变量选项。,
在SPSS中对因变量的定义是,如果因变量Y有J个值(即Y有J类),以其中一个类别作为参考类别,其他类别都同他相比较生成J-1个冗余的Logit变换模型,而作为参考类别的其模型中所有系数均为0。在SPSS中可以对所选因变量的参考类别进行设置,如图2-5在因变量对话框下有一“参考类别”选项。点击后会弹出图2-6对话框。在该对话框中我们选中设定,输入数值1,这代表我们以分类数值1所代表的类别作为参考类别,即最低数值作为参考类别。 单击继续。当然也可以选择“第一类别”和“最后类别”,入选中分别表示以最低数值或最高数值作为参考类别。其他设置与二元Logistic分析相似,将我们要输出的项勾选即可,点击图2-5中确定,输出数据。 输出数据基本与二元Logistic分析相似,我们重点讲下最后一项“参考估计”,如图2-7所示,其中参考类别为ICAS=1的分类情况,而其中的ICAS=0分为2、3、4三种,分别给出了ICAS=0时的数值。而其中Exp(B)(即OR值)表示某因素(自变量)内该类别是其相应参考类别具有某种倾向性的倍数。如Exp(B)=2.235时,即表示在较轻这一类别下ICAS患者数为其他类别(ECAS和NCAS)的2.235倍。这里面的显著水平即为P值。,
这里要强调的是,一些文献中在输出数据的时候经常会给出“Referent(参考)”项,这里的Referent,即为我们这里所选的参考类别1,因为,
1作为参考类别,所以其所有数值为0,
,即无数据输出。因此在文中需标注其为Referent。,

,

,

,
,
转载请注明:数据分析 » spss logistic回归分析结果如何分析_spss中logistic回归
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

AMLG ( 赣ICP备16006919-2号 )

GMT+8, 2020-8-9 03:56 , Processed in 0.095351 second(s), 27 queries .

快速回复 返回顶部 返回列表